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Abstract—Two nonlinear control algorithms for controlling nonlinear systems include the receding hori zon method
and the nonlinear neural network inverse model methods. These methods have been found to be useful in dealing
with difficult-to-control nonlinear systems, especially in simulated systerns. However although much simulation work
has been performed with these methods, simulation only is inadequate to guarantee that these algorithms could be
successfully implemented in real plants. For this reason, a relatively low cost and simple online experimental con-
figuration of a partially simulated continuous reactor has been devised which allows for the realistic testing of a wide
range of nonlinear estimation and control techniques i.e. receding horizon control and neural network inverse model
control methods. The results show that these methods are viable and aftractive nonlinear methods for real-time ap-

plicationin chemical reactor systems.
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INTRODUCTION

In practice, most systems encountered in the real world are to
some extent nonlinear and in many of the control applications,
nonlnear models are required to provide acceptable controls. In
reality modelling and identification of nonlinear system is much
more complex and difficult to obtain when compared to linear sys-
tems. This difficulty hes limited the usage of nonlinear models to
regions and systems where the model obtained is reliable. How-
ever in recent years many different techriques mvolving nonlimear
control methodology have been proposed [Bequette, 1991]. Two
such advanced control algorithms include the nonlinear receding
honzon method, which 15 a model-based strategy and the other s
the neural-network inverse-model based method, which is an in-
put-output data based strategy. The receding horizon method is ba-
sically an extension of the open-loop optimal method. Tt incorpo-
rates plant nonlinearities, feedback and an end-point constraint
while computing a control trajectory n time. While mn the neural-
networle-based technique, the inverse neural network model acts
as the controller in a one-step implementation action. The inverse
model 18 obtamed from using the wput-output data of the plent or
madel of the system. Details of these two techniques will be given
m later sections.

Both these techniques have been applied by other researchers
in many simulation studies [Kershenbaum, 1993; Mayne, 1995;
Hunt, 1992; Nahas, 1992] but since real plants do not behave in
exactly the same manner as their models, the real performance and
stability tests of any control strategy must include some plant-maod-
el mismatch. This can be mtroduced by subjecting these algo-
rithms and methods to an actual plant. Tn fact plant/maodel mis-
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match and disturbances are inherently present in the real system.
These control algorithms would only be useful for mdustrial appli-
cations if proven successful in these real plants. However before
applying them in the industrial scale plants, they are normally
tested mn pilot plants, which 15 the common, safe and economical
approach for testing new and advanced methods such as these. In
fact up-to-date no other applications utilising any of these two tech-
niques have been reported on a real reactor system, whether m a
pilot-plant or an industrial plant [Hussain, 1999]. This paper pre-
sents an experimental wwestigation concermng the utilsation of
these two techniques on a partially simulated pilot-plant reactor
(PARSEX) system for controlling its temperature. Studies were
made for set pomt tracking as well as for disturbance rejection cases
under plant-model mismatches, as will be reported in the next few
sections.

PILOT PLANT-PARTIALLY SIMULATED REACTOR
SYSTEM

The PARSEX (Partialty Simulated Exothermic Reactor) is a re-
latively low-cost, sunple on-line experimental configuration, which
approximates an exothermic reaction taking place in a batch or
continuous reactor, as can be seen mn Fig. 1 [Kershenbaum, 1994].
This plant has been devised for testing the performance of varicus
nonlinear estimation and control algorithms. Tt basically consists of
two main wuts: a continuous well-stired reactor of approxamate
volume of 0.1 m” and a separate cooler section with approximately
0.7m’ of heat transfer area. The reactcr is charged with water
which represents the hquid reactants m this PARSEX system. Heat
within these reactants is exchanged with the cooling medium by
punpmg the reactants through the extermnal cooler via pump, M6
before bemng recycled mto the reactor again. The cooler 1s provided
with good circulation of cooling water by the pump, M10 and fresh
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Fig. 1. Diagram of the PARSEX reactor.

make up water from the mamn water supply system. The feed to
the reactor is pumped into the reactor from the feed tank through
the pump M9. This feed flow is measured by the flowmeter F1
and controlled by the control valve V1. The temperature of the re-
actor, meastred by detector T14 is regulated by the cooling water
temperature, measwred by detector T12. This cooling water tem-
perature is manipulated by the fresh make-up cooling water flow,
measured by flowmeter F10 and controlled by the control valve
V5. The “reaction” 13 simulated by solving the relevant dynamic
mass balance equations for the system. The concentration of reac-
tart in the reactor denoted by C3 is a ‘simulated’ value obtained
from solving these dynamic equations. The simulation also calcu-
lates the amount of heat liberated by the “reaction” as a function of
time. An approprate amount of steamn 13 then sparged mto the re-
actor, which is measured by flowmeter F3 and controlled by the
control valve V3. Many exothermic reactions can be experimen-
tally simulated quite reahstically in this way and the effect of thus
operation is to achieve close resemblance in the pilot plant to the
real reactor with true reactions. The controllers for all these control
valves are “software-driven” by the Paragon data acqusition and

Table 1. Physical properties and process data for the reactor
U,=68.0 keal/{min'm? °C)

k,=3.64%10° min”'

A,=0.7m’ AH=8000.0 keal/k'mol
V.=024m’ E/R= 6000.0"K!
C,,=C,, keali(lkg’ °C) F=0.0036 m*/min

C, 1.0 keal/(ke-"C) V,=0.012 0’

p,=p, kg/m’ T,=1.1 min

p,=1000.0 kg/m’ T.,=293.15 K (20 °C)

Initial Steady State Condition
C,(0)=5.364 kmol/m’ T,(0)=333.15 K (60 °C)
C,.=25.0 kmol/m’ T, =333.15 K (60 °C)
T,=300.15 K (23 °C) T,(0)=324.15 K (51 °C)

Reactor

Sparge Steam

control system. The process data for the reactor can be seen m
Table 1. The model equations relating to the reactor can be seen in
the Appendix.

The mformation flow for the reactor/computer mteraction 1s
shown in Fig. 2. The Paragon 550 Software (Tntec Controls Corpo-
ration) manages the data acquisition and corventional PID control
of slave loops. At a high frequency (typically every 2 seconds),
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Fig. 2. Information flowchart of the experimental study.
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measurements of the reactor temperature, level, and flowrates are
sent to a reactor simulation programme. Although there are no real
chemical reactions occurring in the reactor, any desired reaction
processes with or without assumptions of perfect mixing, constant
temperature, etc. can be simulated by solution of the dynamic ma-
terial balance equations in real time, given the actual measure-
ments of mlet and outlet flowrates, reactor level and temperatures
and suitable rate expressions for the simulated reactions. Then, giv-
en knowledge of the heats of reaction for the simulated reactions,
the amount of heat released by reaction cen be calculated and con-
verted to a desired flow rate of sparge steam which is controlled by
the steam control valve (V3). Finally, at a lower frequency (typi-
cally every 6-12 seconds), the control and estimation algorithms
being tested calculate the desired set point of the jacket tempera-
ture and/or the required coolmg water flow rate and this informa-
tion is passed back to the PARSEX reactor. Clearly, the PARSEX
configuration can be used to test a wide range of control and esti-
mation algorithms and the size of the equipment can be altered to
suit individual requirements. In this work, we demonstrate the ap-
plication of receding horizon control and neural-network-mverse-
model based control on the reactor.

THEORETICAL DESCRIPTION

1. Receding Horizon Control

The 1dea of a Receding Horizon Control algonthm has been
known for a long time. The basic concept of the RHC control de-
slgn 18 to compute a control trajectory for a whole horizon time
minimising a cost function of a plant subject to a dynamic plant
model incorporating plant nonlinearities, and an end point con-
stramt. The mitial value of control 13 then applied to the plant.
Some feedback is provided by measurements/estimates of state at
the next interval and repeating the calculation [Mayne and Michal-
ska, 1990; Kershenbaum et al., 1993].

As in several model-based controllers, RHC requires the meas-
urement or estination of the states of an appropnate process mod-
el. However, in most industrial processes, the state variables are
not all measurable or not with sufficient accuracy for control pur-
poses. Furthermore measurements that are available often contain
significant amounts of random noise and systematic errors. Tn
these situations, online estimation techmques have been applied to
estimate the state variables. Sequential estimation techniques such
as the extended kalman filter (EKF) produce estimates of true pro-
cess values from noisy process measurement and switable process
models. They can also be easily incorporated into the RHC tech-
mique to cater for plant/model mismatches, as demonstrated in this
work [Maybecl, 1982].

The basic concept of a receding horizon control algorithm is
that the whole future control actions of the recedmg honzon con-
trol (RHC) algorithm are calculated from an optimal control prob-
lem inchuding the current measurements, cost function, model par-
ameters and constraints of states and controls. However, only the
first element of control is applied to the system. Then, states are
measured or estimated and used as mutial condiions m order to re-
calculate the future controls by resolving the optimal control prob-
lem [Kwon, 1977; Biegler, 1993].

Typically, the optimal control problem can be given by a cost
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function (Performance Tndex):
min [*W,(T, = T,*)'dv (1)

where W, is a weighting factor, sulyject to a final state constraint
[Tr{7)=Tr*] and the system equations (state constramnts), as taken
from the Appendix i.e.

dT Q F U, *Ar*(T,,~T,.)
m r o+ —(T.— +=5 ——
dt  p,C,V, V,(Tf Tn) p.C.V, @)
dac F
op e Eee
T V,(C“" ) &)

The meanings of these symbols can be seen in the nomencla-
ture. The model Egs. (2) and (3) are obtained with standard as-
sumptions such as perfect mixing and no heat lost, which are not
neccessarily valid in an experimental system. Here, standard varia-
tional optimal control techriques are used to calculate U(t).

Since, in most processes, the state variables required for model-
based controller implementation are not all measurable or, not with
sufficient accuracy for control purposes, state estimation technicques
have been utilised as well. In addition, it is possible to inchude un-
certam model parameters such as the heat transfer coefficient and
the rate constant within the state vector and estimate these along
with the measured temperature, T, and unmeasured concentration,
C,.

Fig. 3. illustrates the flowchart of the RHC with the EKF ap-
proach. As we see from the RHC algonthm, a set of control ac-
tions is determined on-line based on current states. Only the first
element of control is applied to the system; the control action at
time k+1 15 the control T,,(1) of future controls calculated at time
k. Some feedbadk is obtained by measurements of state at the next
nterval and repeating the calculation. The inclusion of the EKF is
for estinating the urmmeasured state, C,, and unknown parameters,

Measurement (Trm) Reactor Simulation

k=k+1

Attime=k At time = k, Tjm(1)

Tjm(1), Tim(2), Tim(3), ......, Tim(N-1),
Tjm(N)

.....................................................

#{ Extended Kalman Filter

Estimate of Ca and
parameters

Y A 4
Optimal Control Problem

- Material/Energy balances
- Final state constraint
- Fixed horizon time

Fig. 3. Flowchart of the RHC with the EKF approach.
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Fig. 4. Implementation diagram of neural-network based IMC
strategy.

the heat transfer coefficient and the rate constant, using the avail-
able measurement of T, Measurements and estimates are com-
pared to a set poit or predicted value. As a result, the error be-
tween the measurements and set point or predicted value caused
by plant/model mismatch or disturbences can be utilised within the
RHC algorithm. The RHC algorithm, then, produces the future
controls which minimise this error based on the updated model
parameters.
2. Neural-Network Inverse-Model Based Method

A robust and stable control strategy incorporating neural net-
work is that of the nonlinear internal model control technicue,
which is basically an extension of the linear TMC method [Econo-
mou, 1986]. In this method both the forward and mverse models,
as seen in Fig. 4 are used directly as elements within the feedback
loop. Tn this case the neural networle, acting as the controller, has to
leamn to supply at its output, the appropriate control parameters, u
for the desired target, v, at its input. In this implementation u re-
presents the jacket temperature, T, and the y is represented by the
reactor temperature, T,,. The network inverse model is then utilised
in the control strategy by simply cascading it with the controlled
systemn or plart as seen m Fig. 4. In this control scheme the desired
set point, vsp acts as the desired output temperature which is fed to
the network together with the past values of inputs T,, and outputs
T, and C, respectively to predict the desired current plant mput i.e
current value of T,,. The mput output pattern for the nverse model
m this implementation can be seen m Fig. 5. Further to this, the
forward model placed in paralle] with the plant, to cater for plant/
maodel mismatches and in addition the error between the plant out-
put and the newral net forward model 13 subtracted from the set po-
mt before bemg fed mto the mverse model In this case the forward
model is fed with the current value of T, and the past values of
T Tn and C, respectively. The forward model can also be fed
with its past outputs instead of the plant cutputs, especially in cases
of noisy plant output data (as seen from the dotted line of Fig. 4).

T(k-1) T(k) T(k+1)
C(k-1) C(k)
u(k-1)
Input Data
T - reactor temperature

C - reactor concentration
U - control input (jacket set temp)

Output Data

Fig. 5. Input-output pattern for the neural network inverse model.

A filter; F 13 mtroduced prior to the controller m this approach to
incorporate robustness in the feedback system (especially where it
is difficult to get exact inverse models) and also to project the error
signal mto the appropriate mput space of the controller.

Other variations to this approach such as adding delay elements
mstead of the forward model (called dual neural net controller or
direct networle controller) and having a backup neural net in paral-
lel with the neural net controller for online training and control re-
finement have also been discussed m the literature [Psichogios,
1991; Pao, 1992; Hunt, 1992]. In many of the cases, presented in
the literature using this approach, the necessary control signals, u
1s computed by numencally mvertmg the neural network forward
model at each interval by Newton’s method or substitution meth-
ods based on the contraction mapping theorem. The first derivative
with respect to the control input can be computed in these tech-
miques by the usual bakpropagation method. These numerical tech-
niques are however computationally mtensive and tune-consum-
ing, they are very sensitive to the initial estimates and may not nec-
cessarily give the global and unique solution. Hence they are not
suitable for online implementation. For online implementation as
n our study, we utilise the output of the offline trained inverse neu-
ral network model directly as the control signal, which has fast ac-
tion and suitable for real life application such as described in this
worl.

EXPERIMENTAL STUDIES ON THE PARSEX
REACTOR

1. Receding Horizon Control Implementation
The aim of this experimental work 1s to test the receding honi-

Korean J. Chem. Eng.(Vol. 17, No. 5)
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Fig. 6. Response of the RHC (nominal case).

zon control algonthm performance on the PARSEX reactor. The
experimental case study involves set point tracking under the dis-
turbance of feed flow rate and parameter changes. Tn all the cases
below, a 25% mcrease m feed flowrate was miroduced at time 100
minutes and the control action initiated at time 200 minutes.

Tn reality, neither the parameters nor the true process model are
known exactly. Therefore, the experimental results already include
the effects of plant/model mismatch. The experimental results for a
nominal case of the RHC controller with estimator and a corre-
sponding PID controller are presented in Figs. 6 and 7 respectively.
Fig. 6 shows that the RHC controller with estimator is able to pro-
vide good control response. This 1 because the EKF can give a
good estimate of the reactant concentration. This estimated reactant
concentration together with measured variables are used in the re-
ceding horizon control algorithm to determine the jacket tempera-
ture which can regulate the reactor temperature to the desired set-
pomt.

On the other hand, although the PID controller can control the
reactor temperature at the desired setpoint, it provides control ac-
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Fig. 7. Response of the PID (nominal case).
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Fig. 8. Response of the RHC (mismatch in rate constant).

tion which 1s rather noisy and the reactor temperature oscillates
around the setpoint (Fig. 7). Without any special tuning, the reced-
ing horizon control gives the control action with less drastic control
action than that of the PID controller.

Next, the RHC controller with the EKF is tested in a case where
the true rate of reaction has been increased by 25%. Tt can be seen
that the EKF can accommodate the mismatch and give good esti-
mates of Ca as shown in Fig. 8. With these estimates, the RHC
controller can control the reactor temperature to its set pomt and
maintain it throughout the experiment.

Finally, the RHC controller with the EKF is tested in a case
where the assumed value of the heat transfer coefficient has been
decreased by 50%. Tt can be seen that the RHC controller with the
EKF is still able to drive the reactor temperature to its set point.
Then, it can control the reactor temperature at the set point through-
out the experiment. Tn addition, this experimental result shows
that the EKF can accommodate the mismatch end give good est-
mates of C, as shown in Fig. 9.
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Fig. 9. Response of the RHC (mismatch in heat transfer coeffi-
cient).
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2. Neural Network Inverse Model Based Implementation

In order to mplement the neural-network method online, open
loop testing was performed on the PARSEX reactor to generate
the relevant data for training the forward and inverse model repec-
tively. The open loop data was generated by varying the corntrol in-
putsignal i.e. the cooling water jacket temperature set poirt, in var-
1ous step sequences and then observing and recording the effect on
the reactor temperature and concentration. The neural network
maodels were trained by use of the backpropagation technique with
adaptive learnng rate. Various traiing and test data sets were used
n validating the accuracy of the neural network utilised in the con-
trol strategy. The details of these methods and the neural network
training can be found in Hussain [1996]. The forward and inverse
models obtained from the training above were then implemented
m the IMC strategy for performmg set-pomnt tracling and distur-
bance-rejection studies on the PARSEX reactor. These control im-
plementations are discussed below: -
2-1. Set Pomnt Tracking

The set point tracking experiment was done with step down in
the required reactor temperature, to 42 °C, and step up, to 53 °C
from the initial steady state temperatire of 47°C. A tuning filter
value of 0.85 was used in this implementation. Each time step re-
presents the concurrent data acquisition and control implementa-
tion sampling time of 6 secs. The experimental results obtained in
this case can be seen in Fig. 10 The results overall showed that the
reactor temperature could track the set pomt profile reasonably
well even under the nonideal experimental conditions. However
other observations seen from these results are as follows: -

(1) Offsets in the range 0.5-1.1 °C were observed at all set points
and they were biggest at the ughest and lowest set pomt values.
These offsets were mainly due to the offset in the control predic-
tion as given by the neural network controller, which depended on
the accuracy of the trained inverse model offline.

(2) At the nominal set point value (of about 47 °C) in the begin-
ning and middle of trackmg, the jacket temperature could not reach
its set point temperature due to the saturation of the valve, V5 and
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Fig. 10. Set point tracking - Neural Network inverse-model ap-
plication.

the fact that the jacket temperature cannot go higher than the reac-
tor temperature m practice. However this lugh jacket temperature
set point value of over 47 °C, set by the neural-network controller,
enabled the jacket temperature to reach close to the value of 45°C.
This enabled the reactor temperature to keep close to the nominal
set point, with small offsets.

(3) The set pomt tracking action was fast when steppmg down
but sluggish when stepping up. This is basically due to saturation
of the control valve, V5 (controlling the temperature of the cooling
water) at these lower set-pomt values, as seen n the valve % open-
ing graph of Fig. 10. This speed of tracking in the response basi-
cally follows that of the jacket cooling water tem perature in track-
ing the jacket set point temperature, as expected. This sluggishness
however would not have happen if dual configuration for control-
lng the reactor temperature were available i the system: cooling
water for cooling and hot water/steam for heating purposes.

2-2. Set Pomt Regulation under Plant/Model Mismatch Cases - In-
crease in AH

In thus case study, the distirbance represents an mternal distur-
bance in the form of plant/model mismatch introduced by an in-
crease in the heat of reaction AH by 10% to 115558 keal/min. This
change was mtroduced by changing the relevant parameter within
the reactor program, which re-calculates the amount of heat gener-
ated and hence the amount of steam injected into the system. At
this mstant also the controller action 1.e jacket set pomt temper-
ature, was frozen to its latest value (47.5 °C), which is the value
prior to the mtroduction of the disturbance at the 300th time step.
The system was then operated under open-loop control until the
900th time step. The increase in AH at the 300th time step, caused
the reactor temperature to rise to another steady state temperature
of about 50.7 °C. When the controller was initiated again at the
900th time step, the neural network controller immediately acted
to reduce the jacket set point temperature and hence the reactor
temperature to its initial nominal value. When the reactor tempera-
ture reached below 1ts set pomt value at the 1040 time step the con-
trol action increased again to bring the reactor temperature back
close to its steady state value at the 1300th time step. The result
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Fig. 11. Set point regulation with plant'imodel mismatch - Neural
Network inverse-model application.
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can be seen in Fig. 11.
CONCLUSION

The expermmental results have clearly shown the effectiveness
of these nonlinear control algorithms under the inherent presence
of plant/model mismatches. The PARSEX reactor can be stabilised
by the RHC controller with EKF in the presence of dishrbances,
plant/model mismatch and uncertainties. Tt gave better results than
the conventional PID method which had nosiy responses. In the
neural-network method, set point tracking and regulation under
plant/model mismatch was achieved equally well with slight off-
sets in the responses. The PARSEX reactor can also complement.
simulation studies and lend credence to tests of proposed new and
advanced control algonthms. However further tests on robustness
will have to be carried out before such algorithms are implemented
on the industrial scale.

Appendix: Model Equations for the Continuous Reactor

The reaction used by Limcqueco et al. [1990] has been studied
here. Some of the physical and model parameters in that worls (spe-
cifically, the reactor volume, the heat transfer coefficient and the
heat exchange area) have been modified to match those of the av-
ailable experimental reactor. The system assumes a first order, ir-
reversible reaction, A —B, occurring in the continuous reactor.

dac F
e p +Eoo _

=R (L) )
dr, _F .. . U*AXT, T.)

&V (T, —T.) b CLV (5
dT,, Q, F U*A (T, -T,.)
Zmo_ = L ST T Y+

& pCy, VTN ©)

where

R; =1<oeXP( _TE )Ca

Q =(—AH)R,V,

Note: The solution of these equations is required in order to cal-
culate the amount of steam to be injected. Table 1 gives the physi-
cal properties and process data for the reactor.

NOMENCLATURE
A component “A”
A, : heat transfer area [m’]
C, :reactant concentration [mol/m”]
C,, : nominal feed concentration [mol/m’]
C, :specific heat capacity [Keal/kg-K]
E :activation energy [J/mol]
F :volumetric flowrate [m*/min]
I, :jacket flowrate
AH : heat of reaction [Kcal/K-mol]
k, : Arrhenius pre-exponential constant [min™]
R :umiversal gas constant [J/mol-K]

September, 2000

t :time

T, : measured reactor temperature [K]

T,. : measured jacket temperature [K]

T, : feed cooling water temperature [K]

T, : feed temperature [K]

U, : heat transfer coefficient [Kcal/min'm*K]
V. :volume of reactor [m’]

Greek Letters

P :reactant density [kg/m’]
T time constant [min]

Subscripts
a :component “A”
¢ cooling water

f :feedcondition
o :imitial condition or nominal condition

sp : set pomt
r :reactor
1 jacket
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