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Abstract-Two nonlinear control algorithms for controlling nonlinear systems include the receding horizon method 
and the nonlinear neupal network inverse model methods. These methods have been found to be useful in dealing 
with difficult-to-control nonlinear systems, especially in simulated systems. However although nmch sinmlation work 
has been perfomled with these methods, simulation only is inadequate to guarantee that these algolittmls could be 
successfully implemented in real plants. For this reason, a relatively low cost and simple online experimental con- 
figuration of a partially simulated continuous reactor has been devised which allows for the realistic testing of a wide 
lange of nonlinear estinmtion and control techniques i.e. receding horizon control and neural network inverse model 
control methods. The results show that these methods are viable and attl-active nonlinear methods for real-time ap- 
plication in chemical reactor systems. 
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I N T R O D U C T I O N  

In practice, most systems encountered in the real world are to 
some extent nonlinear and in many of the control applications, 
nonlinear models are required to provide acceptable controls. In 
reality modelling and identification of nonlinear system is much 
more complex and difficult to obtain when compared to linear sys- 
tems. Tt~ difficulty has limited the usage of noigmear models to 
regions and systems where the model obtained is reliable. How- 
ever in recent years many different techifiques involving nonlinear 
control methodology have been proposed [Bequette, 1991]. Two 
such advanced control algorithms include the nonlinear receding 
hoiizon method, which is a model-based strategy and the other is 
the neural-network inverse-model based method, which is an in- 
put-output data based strategy. The receding horizon method is ba- 
sically an extension of the open-loop optimal method It incorpo- 
rates plant nonlinearities, feedback and an end-point constraint 
while conlputing a control trajectory in tilne. Wffile in the netu-al- 
network-based technique, the inverse neural network model acts 
as the controller in a one-step implementation action. The inverse 
model is obtained fi-onl using the input-output data of the plant or 
model of the system. Details of these two techniques will be given 
in later sections. 

Both these techniques have been applied by other researchers 
in many simulation studies [Kershenbaum, 1993; Mayne, 1995; 
Hunt, 1992; Nallas, 1992] but since real plmlts do not behave in 
exactly the same manner as their models, the real performance and 
stability tests of any control sWategy must include some plant-mod- 
el mismatch. This can be introduced by subjecting these algo- 
rithms and methods to an actual plant In fact plantJmodel mis- 
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match and dismrlmnces are inherently present in the real system. 
These control algoiittmls would only be useful for industiial appli- 
cations if proven successfiJ1 in these real plants. However before 
applying them in the industrial scale plants, they are normally 
tested in pilot plmlts, which is the conmlon, safe mid economical 
approach for testing new and advanced methods such as these. In 
fact up-to-date no other applications utilising any of these two tech- 
niques have been reported on a real reactor system, whether in a 
pilot-plant or an industrial plant [Hussain, 1999]. This paper pre- 
sents a n  experimental investigation Concelllil]g the utilisation of 
these two techniques on a partially simulated pilot-plant reactor 
(PARSEX) system for controlling its temperaOare. Studies were 
made for set point tt-ac!dng as well as for disttulmnce rejection cases 
under plant-model mismatches, as will be reported in the next few 
sections. 

P I L O T  P L A N T - P A R T I A L L Y  S I M U L A T E D  R E A C T O R  

S Y S T E M  

The PARSEX (Partially Simulated Exothermic Reactor) is a re- 
latively low-cost, simple on-line expelmlental coiffigtu-ation, which 
approximates an exothermic reaction taking place in a batch or 
continuous reactor, ats can be seen in Fig. 1 [Kershenlmmn, 1994]. 
This plant has been devised for testing the performance of various 
nonlinear estimation and control algorithms. It basically consists of 
two main units: a continuous well-stm-ed reactor of approxinlate 
volume of 0.1 m 3 and a sepapate cooler section with approximately 
0.7 m 2 of  heat transfer area. The reactor is charged with water 
which represents the liquid reactm~ in t t~ PARSEX system. Heat 
within these reactants is exchanged with the cooling medium by 
pumping the reactants ff~ough the external cooler via pump, M6 
before being recycled into the reactor agaii1 The cooler is provided 
with good circnlation of cooling water by the pump, M10 and fresh 
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Fig. 1. Diagram of the PARSEX reactor. 
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make up water fiom tile main water supply system. Tile feed to 
the reactor is pumped into the reactor from the feed tank through 
the pump M9. This feed flow is measured by the flowmeter F1 
and controlled by file control valve V1. Tile temp~-ature of tile re- 
actor, measured by detector T14 is regulated by the cooling water 
temperature, measured by detector T12. Tiffs cooling water tem- 
perature is manipulated by the fresh make-up cooling water flow, 
measured by flowmeter F10 and controlled by the control valve 
V5. Tile "reaction" is simulated by solving tile relevant dynamic 
mass balance equations for the system. The concentration of reac- 
tant in the reactor denoted by C3 is a %imulated' value obtained 
from solving these dynamic equations. The simulation also calcu- 
lates the amount of heat liberated by the "reaction" as a fimction of 
trine. An appropliate amount of steam is then sparged into the re- 
actor, which is measured by flowmeter F3 and controlled by the 
control valve V3. Many exothermic reactions can be experimen- 
tally silnulated quite realistically m tiffs way and tile effect of tiffs 
operation is to achieve close resemblance in the pilot plant to the 
real reactor with true reactions. Tile controllers for all these control 
valves are "software-driven" by the Paragon data acqusition and 

Table 1. Physical properties and process data for the reactor 

U~=68.0 kcal/(min.m 2 ~ 

A~ 0.7m 2 
V, 0.24 m 3 

G,=c:, kc~/(kg 3 ~ 
Cps 1.0 kcal/(kg-~ 

P, 0r kg/m3 
G = 1000.0 kg/m 3 

k0=3.64.106 rain -I 

AH 8000.0 kcal/k.mol 
E/R 6000.0 ~ ~ 
F=0.0036 m3/min 
Vj 0.012 1113 
"~ 1.1 min 
T~=293.15 K (20 ~ 

Initial Steadv State Condition 

C~(0)=5.364 kmol/m 3 %(0)=333.15 K (60 ~ 

Cao 25.01anol/m 3 %,p 333.15 K(60 ~ 
T~=300.15 K (23 ~ %(0)=324.15 K (51 ~ 

control system. The process data for tile reactor can be seen in 
Table 1. The model equations renting to the reactor can be seen in 
the Appendix. 

The hffolmation flow for the reactor/computer interaction is 
shown in Fig. 2. The Paragon 550 Software (Intec Controls Corpo- 
Padon) manages tile data acquisition and conventional PID control 
of slave loops. At a high frequency (typically every 2 seconds), 

The Pilot Plant 1 
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Fig. 2. Information flowchart of the experimental study. 
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measurements of the reactor temperaKlre, level, and flova-ates are 
sent to a reactor simulation programnle. Although there are no real 
chemical reactions occurring in the reactor, any desired reaction 
processes with or without assumptions of pelfect mixing, constant 
temperature, etc. can be Sinlulated by solution of tile dynanlic ma- 
terial balance equations in real time, given the actual measure- 
inenLs of inlet and outlet flOWl-ates, reactor level and telnpel-atures 
and suitable rate expressions for the simulated reactions. Then, giv- 
en icnowledge of the heats of reaction for the simulated reactions, 
tile anlount of heat released by reaction can be calculated and con- 
verted to a desired flow rate of sparge steam which is controlled by 
the steam con~ol valve (V3). Finally, at a lower frequency (typi- 
cally every 6-12 seconds), the control and estimation algorithms 

being tested calculate the desired set point of the jacket tempera- 
ture and/or tile required cooling water flow rate and this infonna- 
tion is passed back to the PARSEX reactor. Clearly, the PARSEX 
configuration can be used to test a wide range of control and esti- 
marion algolithlns and tile size of tile equipment can be altered to 
suit individual requirements. In this work, we demonsWate the ap- 
plicatical of receding horizon control arid neural-network-inverse- 
model based control on the reactor�9 

THEORETICAL DESCRIPTION 

1. Receding Horizon Control 
The idea of a Receding Horizon Control algoritiml has been 

known for a long time. The basic concept of the RHC control de- 
sign is to compute a control trajectory for a whole horizon tmle 
minimising a cost fimction of a plant subject to a dynamic plant 
model incorporating plant nonlinearities, and an end point con- 
straint. The initial value of  control is then applied to tile plant. 
Some feedback is provided by measurements/estimates of state at 
the next interval and repeating the calculation [Mayne and Michal- 
ska, 1990; Kershenbaum et al., 1993]. 

As in several model-based controllers, RHC requires the meas- 
urelnent oi- estimatical of tile states of an appropriate process mod- 
el. However, in most industrial processes, the state variables are 
not all measurable or not with sufficient accuracy for control pur- 
poses. Furthemlore measurements that are available often contain 
significant amounts of random noise and systematic errors. In 
these situations, cafline estimation tedlmques tkave been applied to 
estimate the state variables. Sequential estimation techniques such 
as the extended kalman filter (EKF)produce estimates of tree pro- 
cess values froln noisy process measurement and suitable process 
models. They can also be easily incorporated into the RHC tech- 
nique to cater for plant/model mismatches, as demonstrated in this 
work [Maybeck, 1982]. 

The basic concept of  a receding horizon control algorithm is 
that tile whole ftma-e ccaltrol actions of tile receding horizon ccal- 
trol (RHC) algorithm are calculated from an optimal control prob- 
lem including the current measurements, cost fimction, model lmr- 
anletel-s and constl-ainLs of states and controls. However, only tile 
first element of control is applied to the system�9 Then, states are 
measured or es~nated and used as initial conditions in order to re- 
calculate the future controls by resolving the optimal control prob- 
lem [Kwon, 1977; Biegler, 1993]�9 

Typically, the optimal control problenl can be given by a cost 

function (Performance Index): 

�9 d s  2 

m m ~ W d T , - T / )  d* (1) 

where Wl is a weighfirLg factor, subject to a final state cons~aint 
[TI('Q=Tff p] and the system equations (state consti-aints), as taken 
from the Appendix i.e. 

dr , , ,_  Q, + F ( T j  T,,,)+ u ' * a r * ( r ' ' - T ' ' )  (2) 
ctt p,C~,V, , p,G,V, 

dC--2 - a l  (C~o -Co) (3) 
dt 

The meanings of these symbols can be seen in the nomencla- 
~n-e. The model Eqs. (2) and (3) are obtained with starldard as- 
sunaptions such as perfect mixing and no heat lost, which are not 
neccessarily valid in an experimental system. Here, standard varia- 
ticalal optimal Ccaltrol tectmiques are used to calculate U(t). 

Since, in most processes, the state variables required for model- 
based controller implementation are not all meastwable or, not with 
sufficient accuracy for control purposes, state estimation techniques 
have been utilised as well. In addition, it is possible to include un- 
certain model paranletel-s such as tile heat b-ansfer coefficient and 
the rate constant within the state vector and estimate these along 
with the measured temperature, Tr and unmeasured concentration, 
C a �9 

Fig. 3. illustrates the flowchart of the RHC with the EKF ap- 
proack As we see fronl the RHC algon~tml, a set of Ccalb-ol ac- 
tions is determined on-line based on current states. Only the first 

element of control is applied to the system; the control action at 
time k+l  is tile Ccaltrol T;~(1 ) of future controls calculated at time 
k. Some feedback is obtained by measurements of state at the next 
interval and repeating the calculation The inclusion of the EKF is 
for estimating the unmeasured state, C~, and unkllown parameters, 

Measurr (Tnn) Reactor Simulation 

At time = k At time = k, Tim(l) 

I Tim(l), Tjm(2), Tjm(3) ........ Tjm(N- 1), I I 
[ Tim(N) . ~  

~Tim~ = k 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Receding Horizon Controller with Esfimgor 

t i Extended Kalman Filter ] 
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Fig. 3. Flowchart of the RHC with the EKF approach. 
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Fig. 4. Implementation diagram of neural-network based IMC 
strategy. 

the heat transfer coefficient and the rate constant, using the avail- 
able measurement of % Measurements and estimates are com- 
pared to a set point or predicted value. As a result, the error be- 
twcen the measurements and set point or predicted value caused 
by plazlt/inodel mismatch or clisturbances can be utilised witiml the 
RHC algorithm. The RHC algorithm, then, produces the fubare 
controls which minimise this error based on the updated model 
parameters. 
2. Neural-Network Inverse-Model Based Method 

A robust and stable control strategy incorporating neural net- 
work is that of the nonlinear internal model control technique, 
which is basically an extension of the linear IMC method [Econo- 
raou, 1986]. In tiffs inethod both the forward and inverse models, 
as seen in Fig. 4 are used directly as elements within the feedback 
loop. In this case the neural network, acting as the controller, has to 
learn to supply at its output, the appropriate control parameters, u 
for the desired target, y,p at its input. In this implementation u re- 
prese~lts the jacket teraperature, Te~ and the y is represented by the 
reactor temperature, T.. The network inverse model is then utilised 
in the control strategy by simply cascading it with the controlled 
system or plant as seen in Fig. 4. In tiffs control scheme the desired 
set point, ysp acts as the desired oulput temperature which is fed to 
the network together with the past values of inputs Ts and outputs 
T~, and C a respectively to predict the desired current plant input i.e 
current value of T:~. The input output pattern for the inverse model 
in this implementation can be seen in Fig. 5. Further to tiffs, the 
forward medel placed in parallel with the plant, to cater for plant) 
model mismatches and in addition the error between the plant out- 
put and the netral net forward model is subtracted fi-oln the set po- 
int before being fed into the inverse model. In tiffs case the forward 
model is fed with tile current value of Tj~ and the past values of 
T:~, T~ and C~ respectively. The forward model can also be fed 
with its past oulputs instead of the plant oulputs, especially incases 
of noisy plant output data (as seen fi-om the dotted line of Fig. 4). 
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T(bl) 

C(k-O 

u(k-l) 

T(k) 

C(k) 

//  

T(k+l) 

Input Data 

Output Data 

T - reactor temperature 
C - reactor concentration 
U - control input (jacket set temp) 

Fig. 5. Input-output pattern for the neural network Inverse model 

A filter, F is introduced prior to the controller in tiffs approach to 
incorporate robustness in the feedback system (especially where it 
is Nit]cult to get exact inverse models) and also to project the error 
signal into the appropriate input space of the controller. 

Other variations to this approach such as adding delay elements 
instead of the forward model (called dual neural net controller or 
direct network controller) and having a backup neural net in paral- 
lel with the neural net controller for online training and control re- 
fineraent have also been discussed in the literature [Psichogios, 
1991 ; Pao, 1992; Hunt, 1992]. In many of the cases, presented in 
the literabare using this approach, the necessary control signals, u 
is COlnputed by numericaUy inverting the neural network forward 
model at each interval by Newton's method or substikltion meth- 
ods based on the coim-actic~l raapping theorem. The first derivative 
with respect to the control input can be computed in these tech- 
niques by the usual bakpropagation method. These numerical tech- 
niques are however conlptaatic~lally intensive and time-constal- 
ing, they are very sensitive to the initial estimates and may not nec- 
cessarily give the global and unique solutiort Hence they are not 
suitable for online implementation. For online implementation as 
in our study, we utilise the output of the offline trained inverse neu- 
ral network model directly as tile cc~ltrol signal, which has fast ac- 
tion and suitable for real life application such as described in this 
work. 

EXPERIMENTAL STUDIES ON THE PARSEX 
R E A C T O R  

1. Receding Horizon Control Implementation 
The aim of tiffs ex1~fiznental work is to t~st the receding hori- 
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Fig. 8. Response of the RHC (mismatch in rate constant). 

zon control algofiitml ~ffomlance on the PARSEX reactor. Tile 
experimerCal case study involves set point h-acldng under the dis- 
turbance of feed flow rate and parameter changes. In all the cases 
below, a 25% increase in feed flowrate was h~oduced at time 100 
minutes and the control action initiated at time 200 minutes. 

In reality, neither the parameters nor the tree process model are 
known exactly. Therefore, tile ex~ximental results already include 
the effects of plant/model mismatch. The experimental results for a 
nominal case of file RHC controller with estilnator ailcl a corre- 
sponding PID controller are presented in Figs. 6 and 7 respectively. 
Fig. 6 shows that the RHC controller with estimator is able to pro- 
vide good control response. Tt~  is because tile EKF can give a 
good estimate of the reactant concentration. This estimated reactant 
concentration together with measured variables are used in the re- 
ceding horizon control algorithm to determine the jacket tempera- 
ture which can regulate the reactor temperature to the desired set- 
point. 

On the other hand, although the PID controller can control the 

reactor temperature at the desired setpoir~ it provides control ac- 

cs l - ) ,  e - ~ . )  
~ 5  ~ , . , , , 

~5.5 

Tff-). 1]l--), Tl~-J. Try.). 
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Fig. 7. Response of the PID (nominal ease). 
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fion which is rather noisy and tile reactor temperature oscillates 
around the setpoint (Fig. 7). Withont any special tuning, the reced- 
ing horizon control gives the control action with less drastic control 
action than that of tile PIE) controller. 

Next, the RHC controller with the EKF is tested in a case where 
the tme rate of reaction has been increased by 25%. It can be seen 
that the EKE can accommodate file mismatch and give good esti- 
mates of Ca as shown in Fig. 8. With these estimates, the RHC 
controller can control tile reactor temperature to its set point and 
maintain it throughout the experiment. 

Finally, the RHC controller with the EKF is tested in a case 
where the assumed value of tile heat transfer coefficient has been 
decreased by 50%. It can be seen that the RHC controller with the 
EKF is still able to drive the reactor temperature to its set point. 
Then, it can control the reactor t e m p e ~ e  at the set point through- 
out the experiment. In addition, this experimental result shows 
that file EKE can accolrmlodate file mismatch and give good esti- 
mates of  C~ as shown in Fig. 9. 

ca(--), r r 

. . . . .  t 
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T~-) .  7 i ( - - ) ,  T~sp(~.}, TnsPI.f 

! l i  ' 

2 0  ~ . , , , ~ 
0 5{I 100 150 2 ~  250 30Q 

"TIME{mi~) 

Fig. 9. Response of the RHC (mismatch in heat transfer coeffi- 
cient). 
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2. Neural  Network  Inverse  Model  Based Implementat ion  
II1 order to implement tile neta-al-network inethod online, open 

loop testing was performed on the PARSEX reactor to generate 
the relevant data for training the forward and inverse model repec- 
tively. Tile open bop data was generated by varying tile control in- 
put signal i.e. the cooling water jacket temperature set point, in var- 
ious step sequences and then observing and recc~dmg tile effect on 
the reactor temperature and concentration. The neural network 
models were trained by use of the backpropagation technique with 
adaptive leaming rate. Various training and test data sets were used 
in validating the accuracy of the neural network utilised in the con- 
trol smategy. The details of these methods and the neural network 
training can be found in Hussain [1996]. The forward and inverse 
models obtained from the training above were then implemented 
in tile IMC strategy for perfonning set-point tracking and distur- 
bance-rejection studies on the PARSEX reactor. These control im- 
plementations are discussed below: - 
2-1�9 Set Point Tracking 

The set point tracldng experiment was done with step down in 
tile required reactor terapera~-e, to 42 ~ and step up, to 53 ~ 
from the initial steady state temperahlre of 47 ~ A tuning filter 
value of 0�9 was used in this implemeutatiort Each time step re- 
prese~lts tile concun-ent data acquisition and control ilnplementa- 
tion sampling time of 6 secs. The experimental results obtained in 
this case can be seen in Fig. 10 The results overall showed that the 
reactor temperature could track the set point profile reasonably 
well even under the nonideal experimental conditions. However 
other observations seen from these results are as follows: - 

(1) OffSets in the range 0�9 ~ were observed at all set points 
and they were biggest at tile highest and lowest set point values�9 
These ot&ets were mainly due to the offset in the control predic- 
tion as given by the neural network controller, which depended on 
the accuracy of the trained inverse model offline. 

(2) At the nominal set point value (of about 47 ~ in the begin- 
ning and raiddle oftrackiug, tile jacket teraperature could not reach 
its set point temperature due to the sahlration of the valve, V5 and 

55i" ' ' t rse! , _ - - - -  " ~ \  
E S 0 ~ . . t  - - - l r a c f  j f ~  

 45F I "  I . J -  . . . . . . . . . . . . . .  

" "~  ' i . . . . .  i i 
0 500 1000 1500 20'00 25'00 

55 / 'tjset ' 

3000 

0 

100 t 

500 1000 1500 
time ~ep 

0 500 1000 1500 
time step 

20'00 2500 3000 

I 

ii 
Ill~l 

, , J \  ;i ',,.~.~,,4 
2000 2500 3000 

Fig. 10. Set point tracking - Neural Network inverse-model ap- 
plication. 
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the fact that the jacket temperature cannot go higher than the reac- 
tc~- telnpel-ature in practice�9 However tiffs high jacket telnperature 
set point value of over 47 ~ set by the neural-network controller, 
enabled the jacket temperature to reach close to the value of 45 ~ 
T t~  enabled tile reactor teraperature to keep close to tile nominal 
set point, with small offsets. 

(3) Tile set point tracking action was fast when stepping down 
but sluggish when stepping up. This is basically due to sahlration 
of the control valve, V5 (controlling the temperahlre of the cooling 
water) at these lower set-point values, as seen in tile valve % open- 
ing graph of Fig. 10. This speed of macldng in the response basi- 
cally follows that of the jacket cooling water temperahlre in track- 
ing the jacket set point temperature, as expected. This sluggishness 
however would not have happen if dual configuration for control- 
ling tile reactor temperature were available in tile systeln: cooling 
water for cooling and hot water/steam for heating purposes. 

2-2. Set Point Regulatic~l under Plant/Model Mislnatch Cases - ]1J- 
crease in AH 

]I1 this case study, the disturbance represents an i i~mal  distur- 
bance in the form of plant/model mismatch intreduced by an in- 
crease inthe heat of reactionAH by 10% to 115558 kcal/min. This 
change was introduced by changing tile relevant parameter witiml 
the reactor program, which re-calculates the amount of heat gener- 
ated and hence the amount of steam injected into the system. At  
tiffs instant also tile controller action i.e jacket set point teraper- 
abare, was frozen to its latest value (47.5 ~ which is the value 
prior to tile iim-oduction of the disturl:~lce at tile 3(X)th time step�9 
The system was then operated under open-loop control until the 
900th time step�9 The increase in AH at the 300th time step, caused 
tile reactor temperature to rise to anotiler steady state telnperature 
of about 50�9 ~ When the controller was initiated again at the 
900th time step, the neural network controller immediately acted 
to reduce the jacket set point temperabare and hence the reactor 
temperature to its initial nominal value�9 When the reactor tempera- 
ture reached below its set point value atthe 1040 time step the con- 
trol action increased again to bring the reactor temperahlre back 
close to its steady state value at the 1300th time step�9 The result 

5 0  " ~ . . . . . . . .  - t 45 . . . . . .  

~' 200 400 ~ 800 10~0 12~ 0 1400 

0 

so 

r 
0 

�9 .. - - 

t i t i 
200 400 600 ,~00 1000 1200 1400 

2~ ~0 G~ 8~ 1~0 1~0 14~ 
~me$~p 

Fig. 11. Set point regulation with planl/model mismatch - Neural 
Network inverse-model application. 
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can be seen in Fig. 11. 

C ONCLUSION 

Tile experimental results have clearly shova: file effectiveness 
of these nonlinear control algorithms under the inherent presence 
of plant/model mismatches. Tile PARSEX reactor can be stabilised 
by the RHC controller with EKF in the presence of disturlmnces, 
plant/model mismatch and uncertainties. It gave better results than 
tile conventional PID method which had nosiy respanses. In the 
neural-network method, set point tracking and regulation under 
plant/model mismatch was achieved equally well with slight off- 
sets in the responses. The PARSEX reactor can also complement 
simulation studies and lend credence to tests of proposed new and 
advanced control algolittm:s. However further tests on robustness 
will have to be carried out before such algorithms are implemented 
on the industrial scale. 

Appendix: Model  Equations for the Continuous Reactor 

The reaction used by Limqueco et al. [1990] has been studied 
here. Some of the physical and model parameters in that work (spe- 
cifically, the reactor volume, the heat transfer coefficient and the 
heat exchmge area) have been modified to match those of file av- 
ailable experimental reactoE The system assumes a first order, ir- 
reversible reaction, A ~ B ,  occurring in the continuous reactor. 

dCo F 
+~(Coo -Co) (4) --fit =-R: , 

F_z(~ ~ ,  U,*A,*(T~,,, T,,,) 
dt =v, "*~ *' 'J o,%:v, (5) 

dW,~_ Q~ +F(Tj  W )+U,*A,*(T,.~-T,~) (6) 
dt p,Cp, V, V, ' '  p,Cp,V, 

where 

Q, (-AH)R,V, 

Note: The solution of these equations is required in order to cal- 
culate the amount of steam to be injected Table 1 gives the physi- 
cal properties and process data for tile reactor. 

N O M E N C L A T U R E  

A : component "A" 
A,, : heat transfer area [m 2] 
C~ : reactant concentration [mol/m 3] 
C~o : nominal feed concentration [mol/m 3] 
Cp : specific heat capacity [Kcal/kg.K] 
E : activation energy [J/mol] 
F : volumetric flowrate [m3/min] 
Fj : jacket flowrate 
AH : heat of reaction [Kcal/K.mol] 
k0 :/Xa:henius pre-exponenlial constant [mill -1] 
R : universal gas constant [J/mol-K] 

t :time 
T,,~, : measured reactor temperature [K] 
T,~ : measuredjackettemperamre [K] 
T~,, : feed cooling water temperature [K] 
Tr : feed temperature [K] 
U,, : heattransfer coefficient [Kcal/min.m2.K] 
V,. : volume of reactor [m 3] 

Greek Letters 
p : reactant density [kg/ln 3] 
"r : time constant [min] 

Subscripts 
a : component "A" 
c : cooling water 
f : feed condition 
o : initial condition or nominal condition 
sp : set point 
r : reactor 
j :jacket 
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